Single chain spectroscopy of conformational dependence of conjugated polymer photophysics.

نویسندگان

  • T Huser
  • M Yan
  • L J Rothberg
چکیده

Single molecule confocal fluorescence microscopy was used to perform photoluminescence spectroscopy on single, isolated molecules of the conjugated polymer poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV). We show that the fluorescence from single chains of this electroluminescent polymer depends strongly on chain conformation. The time evolution of the spectra, emission intensity, and polarization all provide direct evidence that memory of the chain conformation in solution is retained after solvent evaporation. Chains cast from toluene solution are highly folded and show memory of the excitation polarization. Exciton funneling to highly aggregated low energy regions causes the chain to mimic the photophysical behavior of a single chromophore. Chains cast from chloroform, however, behave as multichromophore systems, and no sudden discrete spectral or intensity jumps are observed. These also exhibit different spectroscopy from the folded chromophores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How chromophore shape determines the spectroscopy of phenylene-vinylenes: origin of spectral broadening in the absence of aggregation.

Single oligo(phenylene-vinylene) molecules constitute model systems of chromophores in disordered conjugated polymers and can elucidate how the actual conformation of an individual chromophore, rather than that of an overall polymer chain, controls its photophysics. Single oligomers and polymer chains display the same range of spectral properties. Even heptamers support pi-electron conjugation ...

متن کامل

Understanding the Structural Evolution of Single Conjugated Polymer Chain Conformers

Single molecule photoluminescence (PL) spectroscopy of conjugated polymers has shed new light on the complex structure–function relationships of these materials. Although extensive work has been carried out using polarization and excitation intensity modulated experiments to elucidate conformation-dependent photophysics, surprisingly little attention has been given to information contained in t...

متن کامل

Unraveling electronic energy transfer in single conjugated polyelectrolytes encapsulated in lipid vesicles.

A method for the study of conjugated polyelectrolyte (CPE) photophysics in solution at the single-molecule level is described. Extended observation times of single polymer molecules are enabled by the encapsulation of the CPEs within 200-nm lipid vesicles, which are in turn immobilized on a surface. When combined with a molecular-level visualization of vesicles and CPE via cryo-transmission ele...

متن کامل

Structure—Property Relationships for Exciton Transfer in Conjugated Polymers

The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations ...

متن کامل

Real-time observation of conformational switching in single conjugated polymer chains

Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 21  شماره 

صفحات  -

تاریخ انتشار 2000